细说So动态库的加载流程

dlopen之内存装载

dlopen用来打开一个动态链接库,并将其装入内存。它的定义在Android源码中的路径为/bionic/linker/dlfcn.cpp,执行流程如下:

dlopen执行流程其核心代码在do_dlopen中实现,根据传入的路径或文件名去查找一个动态库,并执行该动态链接库的初始化代码。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
void* dlopen(const char* filename, int flags) {
ScopedPthreadMutexLocker locker(&gDlMutex);
soinfo* result = do_dlopen(filename, flags);
if (result == NULL) {
__bionic_format_dlerror("dlopen failed", linker_get_error_buffer());
return NULL;
}
return result;
}

soinfo* do_dlopen(const char* name, int flags) {
if ((flags & ~(RTLD_NOW|RTLD_LAZY|RTLD_LOCAL|RTLD_GLOBAL)) != 0) {
DL_ERR("invalid flags to dlopen: %x", flags);
return NULL;
}
set_soinfo_pool_protection(PROT_READ | PROT_WRITE);
soinfo* si = find_library(name);
if (si != NULL) {
si->CallConstructors();
}
set_soinfo_pool_protection(PROT_READ);
return si;
}

再来看find_library这个方法,它会先在solist(已经加载的动态链接库链表)里进行查找,如果找到了就返回对应的soinfo结构体指针。否则,就调用load_library进行加载。然后,调用soinfo_link_image方法,根据soinfo结构体解析相应的Section。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
static soinfo *find_loaded_library(const char *name)
{
soinfo *si;
const char *bname;

// TODO: don't use basename only for determining libraries
// http://code.google.com/p/android/issues/detail?id=6670

bname = strrchr(name, '/');
bname = bname ? bname + 1 : name;

for (si = solist; si != NULL; si = si->next) {
if (!strcmp(bname, si->name)) {
return si;
}
}
return NULL;
}

static soinfo* find_library_internal(const char* name) {
if (name == NULL) {
return somain;
}

soinfo* si = find_loaded_library(name);
if (si != NULL) {
if (si->flags & FLAG_LINKED) {
return si;
}
DL_ERR("OOPS: recursive link to \"%s\"", si->name);
return NULL;
}

TRACE("[ '%s' has not been loaded yet. Locating...]", name);
si = load_library(name);
if (si == NULL) {
return NULL;
}

// At this point we know that whatever is loaded @ base is a valid ELF
// shared library whose segments are properly mapped in.
TRACE("[ init_library base=0x%08x sz=0x%08x name='%s' ]",
si->base, si->size, si->name);

if (!soinfo_link_image(si)) {
munmap(reinterpret_cast<void*>(si->base), si->size);
soinfo_free(si);
return NULL;
}

return si;
}

static soinfo* find_library(const char* name) {
soinfo* si = find_library_internal(name);
if (si != NULL) {
si->ref_count++;
}
return si;
}

load_library调用open_library打开一个动态链接库,返回一个句柄,将其与共享库所在的路径作为参数,对ElfReader进行初始化。
dlopen调用链dlopen调用链ElfReader作用域中的Load函数,会执行以下操作:

  1. 读取并校验ELF文件头
  2. 读ELF程序头并映射至内存
  3. 将Load Segment加载进内存
  4. 在内存中找到程序的起始地址
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    bool ElfReader::Load() {
    return ReadElfHeader() &&
    VerifyElfHeader() &&
    ReadProgramHeader() &&
    ReserveAddressSpace() &&
    LoadSegments() &&
    FindPhdr();
    }

    bool ElfReader::ReadElfHeader() {
    ssize_t rc = TEMP_FAILURE_RETRY(read(fd_, &header_, sizeof(header_)));
    if (rc < 0) {
    DL_ERR("can't read file \"%s\": %s", name_, strerror(errno));
    return false;
    }
    if (rc != sizeof(header_)) {
    DL_ERR("\"%s\" is too small to be an ELF executable", name_);
    return false;
    }
    return true;
    }
    **读ELF文件头**
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    // Loads the program header table from an ELF file into a read-only private
    // anonymous mmap-ed block.
    bool ElfReader::ReadProgramHeader() {
    phdr_num_ = header_.e_phnum;

    // Like the kernel, we only accept program header tables that
    // are smaller than 64KiB.
    if (phdr_num_ < 1 || phdr_num_ > 65536/sizeof(Elf32_Phdr)) {
    DL_ERR("\"%s\" has invalid e_phnum: %d", name_, phdr_num_);
    return false;
    }

    Elf32_Addr page_min = PAGE_START(header_.e_phoff); //页的起始地址
    Elf32_Addr page_max = PAGE_END(header_.e_phoff + (phdr_num_ * sizeof(Elf32_Phdr))); //页的结束地址
    Elf32_Addr page_offset = PAGE_OFFSET(header_.e_phoff); //程序头部在页中的偏移

    phdr_size_ = page_max - page_min;

    void* mmap_result = mmap(NULL, phdr_size_, PROT_READ, MAP_PRIVATE, fd_, page_min); //将程序头映射到内存
    if (mmap_result == MAP_FAILED) {
    DL_ERR("\"%s\" phdr mmap failed: %s", name_, strerror(errno));
    return false;
    }

    phdr_mmap_ = mmap_result;
    phdr_table_ = reinterpret_cast<Elf32_Phdr*>(reinterpret_cast<char*>(mmap_result) + page_offset); //程序头表在内存中的地址
    return true;
    }
    **读ELF程序头,并映射到内存**
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    // Reserve a virtual address range big enough to hold all loadable
    // segments of a program header table. This is done by creating a
    // private anonymous mmap() with PROT_NONE.
    bool ElfReader::ReserveAddressSpace() {
    Elf32_Addr min_vaddr;
    load_size_ = phdr_table_get_load_size(phdr_table_, phdr_num_, &min_vaddr); //根据页对齐来计算Load段所占用的大小
    if (load_size_ == 0) {
    DL_ERR("\"%s\" has no loadable segments", name_);
    return false;
    }

    uint8_t* addr = reinterpret_cast<uint8_t*>(min_vaddr);
    int mmap_flags = MAP_PRIVATE | MAP_ANONYMOUS; //匿名私有
    void* start = mmap(addr, load_size_, PROT_NONE, mmap_flags, -1, 0); //调用mmap为动态库分配一块内存空间
    if (start == MAP_FAILED) {
    DL_ERR("couldn't reserve %d bytes of address space for \"%s\"", load_size_, name_);
    return false;
    }

    load_start_ = start;
    load_bias_ = reinterpret_cast<uint8_t*>(start) - addr; //真实的加载地址与计算出来的(读ELF程序头中的p_vaddr)加载地址之差
    return true;
    }
    **调用mmap申请一块足够大的内存空间,为后面进行映射Load段的映射做准备**
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    // Map all loadable segments in process' address space.
    // This assumes you already called phdr_table_reserve_memory to
    // reserve the address space range for the library.
    // TODO: assert assumption.
    bool ElfReader::LoadSegments() {
    for (size_t i = 0; i < phdr_num_; ++i) {
    const Elf32_Phdr* phdr = &phdr_table_[i];

    if (phdr->p_type != PT_LOAD) {
    continue;
    }

    // Segment addresses in memory.
    Elf32_Addr seg_start = phdr->p_vaddr + load_bias_;
    Elf32_Addr seg_end = seg_start + phdr->p_memsz;

    Elf32_Addr seg_page_start = PAGE_START(seg_start);
    Elf32_Addr seg_page_end = PAGE_END(seg_end);

    Elf32_Addr seg_file_end = seg_start + phdr->p_filesz;

    // File offsets.
    Elf32_Addr file_start = phdr->p_offset;
    Elf32_Addr file_end = file_start + phdr->p_filesz;

    Elf32_Addr file_page_start = PAGE_START(file_start);
    Elf32_Addr file_length = file_end - file_page_start;

    if (file_length != 0) {
    void* seg_addr = mmap((void*)seg_page_start, //将Load Segment映射到内存,大小为在ELF文件中所占用的长度
    file_length,
    PFLAGS_TO_PROT(phdr->p_flags),
    MAP_FIXED|MAP_PRIVATE,
    fd_,
    file_page_start);
    if (seg_addr == MAP_FAILED) {
    DL_ERR("couldn't map \"%s\" segment %d: %s", name_, i, strerror(errno));
    return false;
    }
    }

    // if the segment is writable, and does not end on a page boundary,
    // zero-fill it until the page limit.
    if ((phdr->p_flags & PF_W) != 0 && PAGE_OFFSET(seg_file_end) > 0) {
    memset((void*)seg_file_end, 0, PAGE_SIZE - PAGE_OFFSET(seg_file_end)); //如果这块Segment是可写的,且在内存中的结束地址不在页的边界上,则将后面的数据都填充0
    }

    seg_file_end = PAGE_END(seg_file_end);

    // seg_file_end is now the first page address after the file
    // content. If seg_end is larger, we need to zero anything
    // between them. This is done by using a private anonymous
    // map for all extra pages.
    if (seg_page_end > seg_file_end) {
    void* zeromap = mmap((void*)seg_file_end, //如果seg_end大于它在文件中的长度,则继续为多出的那部分申请内存空间,并填充0。这里应该是主要针对bss段
    seg_page_end - seg_file_end,
    PFLAGS_TO_PROT(phdr->p_flags),
    MAP_FIXED|MAP_ANONYMOUS|MAP_PRIVATE,
    -1,
    0);
    if (zeromap == MAP_FAILED) {
    DL_ERR("couldn't zero fill \"%s\" gap: %s", name_, strerror(errno));
    return false;
    }
    }
    }
    return true;
    }
    **将类型为Load的Segment映射到内存**
    接下来,soinfo_alloc方法会为该库在共享库链表中分配一个soinfo节点,并初始化其数据结构。
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    static soinfo* load_library(const char* name) {
    // Open the file.
    int fd = open_library(name);
    if (fd == -1) {
    DL_ERR("library \"%s\" not found", name);
    return NULL;
    }

    // Read the ELF header and load the segments.
    ElfReader elf_reader(name, fd);
    if (!elf_reader.Load()) {
    return NULL;
    }

    const char* bname = strrchr(name, '/');
    soinfo* si = soinfo_alloc(bname ? bname + 1 : name);
    if (si == NULL) {
    return NULL;
    }
    si->base = elf_reader.load_start();
    si->size = elf_reader.load_size();
    si->load_bias = elf_reader.load_bias();
    si->flags = 0;
    si->entry = 0;
    si->dynamic = NULL;
    si->phnum = elf_reader.phdr_count();
    si->phdr = elf_reader.loaded_phdr();
    return si;
    }

    static soinfo* soinfo_alloc(const char* name) {
    if (strlen(name) >= SOINFO_NAME_LEN) {
    DL_ERR("library name \"%s\" too long", name);
    return NULL;
    }

    if (!ensure_free_list_non_empty()) {
    DL_ERR("out of memory when loading \"%s\"", name);
    return NULL;
    }

    // Take the head element off the free list.
    soinfo* si = gSoInfoFreeList;
    gSoInfoFreeList = gSoInfoFreeList->next;

    // Initialize the new element.
    memset(si, 0, sizeof(soinfo));
    strlcpy(si->name, name, sizeof(si->name));
    sonext->next = si;
    sonext = si;

    TRACE("name %s: allocated soinfo @ %p", name, si);
    return si;
    }
    再回过头来看下soinfo_link_image这个方法,它主要实现了动态链接库中section信息的解析:
  5. 先解析dynamic section动态节区,进而实现各个Section的定位;
    解析section
  6. 获取其他Section的信息;
    解析section
  7. 待所有section信息解析完毕后,对HASH,STRTAB,SYMTAB节是否正常解析做校验;
    解析section
  8. 若标志位有FLAG_EXE,则表示当前程序执行的是一个可执行文件。到这里可以确定,linker不仅负责加载so,也负责解析加载一个可执行的ELF文件;
    解析section
  9. 加载所需要的其他共享库,其中find_library会递归调用这个so_link_image函数,直到某个so库没有DT_NEEDED段;
    解析section
  10. 完成rel节的重定位;
    解析section最后,CallConstructors函数会根据动态节区中的信息,获取该共享库所依赖的所有so文件名,并在已加载的动态链接库链表中进行查找、递归调用它们的初始化函数。当运行所需的依赖库都初始化完成后,再执行init_func、init_array方法初始化该动态库。。
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    void soinfo::CallConstructors() {
    if (constructors_called) {
    return;
    }

    // We set constructors_called before actually calling the constructors, otherwise it doesn't
    // protect against recursive constructor calls. One simple example of constructor recursion
    // is the libc debug malloc, which is implemented in libc_malloc_debug_leak.so:
    // 1. The program depends on libc, so libc's constructor is called here.
    // 2. The libc constructor calls dlopen() to load libc_malloc_debug_leak.so.
    // 3. dlopen() calls the constructors on the newly created
    // soinfo for libc_malloc_debug_leak.so.
    // 4. The debug .so depends on libc, so CallConstructors is
    // called again with the libc soinfo. If it doesn't trigger the early-
    // out above, the libc constructor will be called again (recursively!).
    constructors_called = true;

    if ((flags & FLAG_EXE) == 0 && preinit_array != NULL) {
    // The GNU dynamic linker silently ignores these, but we warn the developer.
    PRINT("\"%s\": ignoring %d-entry DT_PREINIT_ARRAY in shared library!",
    name, preinit_array_count);
    }

    if (dynamic != NULL) {
    for (Elf32_Dyn* d = dynamic; d->d_tag != DT_NULL; ++d) {
    if (d->d_tag == DT_NEEDED) {
    const char* library_name = strtab + d->d_un.d_val;
    TRACE("\"%s\": calling constructors in DT_NEEDED \"%s\"", name, library_name);
    find_loaded_library(library_name)->CallConstructors();
    }
    }
    }

    TRACE("\"%s\": calling constructors", name);

    // DT_INIT should be called before DT_INIT_ARRAY if both are present.
    CallFunction("DT_INIT", init_func);
    CallArray("DT_INIT_ARRAY", init_array, init_array_count, false);
    }

loadLibrary之加载调用

Java层通过System.load或System.loadLibrary来加载一个so文件,它的定义在Android源码中的路径为/libcore/luni/src/main/java/java/lang/System.java,执行流程如下:
loadLibrary执行流程接下来,让我们具体看下System.loadLibrary这个方法的实现。可以发现它实际是先通过VMStack.getCallingClassLoader()获取到ClassLoader,然后调用运行时的loadLibrary。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
/**
* Loads and links the library with the specified name. The mapping of the
* specified library name to the full path for loading the library is
* implementation-dependent.
*
* @param libName
* the name of the library to load.
* @throws UnsatisfiedLinkError
* if the library can not be loaded.
*/
public void loadLibrary(String libName) {
loadLibrary(libName, VMStack.getCallingClassLoader());
}

/*
* Searches for a library, then loads and links it without security checks.
*/
void loadLibrary(String libraryName, ClassLoader loader) {
if (loader != null) {
String filename = loader.findLibrary(libraryName);
if (filename == null) {
throw new UnsatisfiedLinkError("Couldn't load " + libraryName +
" from loader " + loader +
": findLibrary returned null");
}
String error = doLoad(filename, loader);
if (error != null) {
throw new UnsatisfiedLinkError(error);
}
return;
}

String filename = System.mapLibraryName(libraryName);
List<String> candidates = new ArrayList<String>();
String lastError = null;
for (String directory : mLibPaths) {
String candidate = directory + filename;
candidates.add(candidate);

if (IoUtils.canOpenReadOnly(candidate)) {
String error = doLoad(candidate, loader);
if (error == null) {
return; // We successfully loaded the library. Job done.
}
lastError = error;
}
}

if (lastError != null) {
throw new UnsatisfiedLinkError(lastError);
}
throw new UnsatisfiedLinkError("Library " + libraryName + " not found; tried " + candidates);
}

以上代码块的主要功能为:

  1. 若ClassLoader非空,则利用ClassLoader的findLibrary方法来获取library的path;
  2. 若ClassLoader为空,则根据传递进来的libraryName,获取到library file的name(比如传递“test”进来,经过System.mapLibraryName方法的调用,返回的会是“libtest.so”)。然后再在一个path list(即下面代码截图中的mLibPaths)中查找到这个library file,并最终确定library 的path;
  3. 调用nativeLoad这个jni方法来load library。

然而,这里其实又牵扯出了几个问题:首先,可用的library path都是哪些?这实际上也决定了我们的so文件放在哪些目录下,才可以真正的被load起来。其次,在native层的nativeLoad又是如何实现加载的?下面会对这两个问题,逐一分析介绍。。

So的加载路径

先来看看当传入的ClassLoader为空的情况(执行System.loadLibrary时并不会发生),那么就需要关注下mLibPaths的赋值,相应代码如下:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
private static final Runtime mRuntime = new Runtime();

/**
* Holds the library paths, used for native library lookup.
*/
private final String[] mLibPaths = initLibPaths();

private static String[] initLibPaths() {
String javaLibraryPath = System.getProperty("java.library.path");
if (javaLibraryPath == null) {
return EmptyArray.STRING;
}
String[] paths = javaLibraryPath.split(":");
// Add a '/' to the end of each directory so we don't have to do it every time.
for (int i = 0; i < paths.length; ++i) {
if (!paths[i].endsWith("/")) {
paths[i] += "/";
}
}
return paths;
}

这里library path list实际上读取自一个system property,直接到System.java下查看初始化代码,它其实是LD_LIBRARY_PATH环境变量的值,具体内容可以查看注释,为”/vendor/lib:/system/lib”
library path listlibrary path list然后再来看下传入的ClassLoader非空的情况,也就是ClassLoader的findLibrary的执行过程。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
/**
* Returns the absolute path of the native library with the specified name,
* or {@code null}. If this method returns {@code null} then the virtual
* machine searches the directories specified by the system property
* "java.library.path".
* <p>
* This implementation always returns {@code null}.
* </p>
*
* @param libName
* the name of the library to find.
* @return the absolute path of the library.
*/
protected String findLibrary(String libName) {
return null;
}

结果发现竟然是一个空函数,而ClassLoader本身也只是个抽象类,那系统中实际运行的ClassLoader是哪个呢?这里可以写个小程序,将实际运行的ClassLoader输出:
小程序日志打印于是,得知android系统中ClassLoader真正的实现在dalvik.system.PathClassLoader。此外,在这条日志中,还顺带将PathClassLoader初始化的参数一同打印了出来。其中,libraryPath为”/data/app-lib/elf.xuexi-1”..
不过PathClassLoader只是继承 BaseDexClassLoader,并没有实际内容。
PathClassLoader继续到BaseDexClassLoader下看findLibrary的实现。
BaseDexClassLoaderBaseDexClassLoader可以看到,这里又是在调用DexPathList类下的findLibrary。关注splitLibraryPath方法,它返回了需要加载的动态库所在目录。
DexPathListDexPathList这里简单说下splitLibraryPath方法的作用,它是根据传进来的libraryPath和system property中”java.library.path”的属性值即“/vendor/lib:/system/lib”来构造出要加载的动态库所在目录列表。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
/**
* Splits the given library directory path string into elements
* using the path separator ({@code File.pathSeparator}, which
* defaults to {@code ":"} on Android, appending on the elements
* from the system library path, and pruning out any elements that
* do not refer to existing and readable directories.
*/
private static File[] splitLibraryPath(String path) {
// Native libraries may exist in both the system and
// application library paths, and we use this search order:
//
// 1. this class loader's library path for application libraries
// 2. the VM's library path from the system property for system libraries
//
// This order was reversed prior to Gingerbread; see http://b/2933456.
ArrayList<File> result = splitPaths(path, System.getProperty("java.library.path"), true);
return result.toArray(new File[result.size()]);
}

/**
* Splits the given path strings into file elements using the path
* separator, combining the results and filtering out elements
* that don't exist, aren't readable, or aren't either a regular
* file or a directory (as specified). Either string may be empty
* or {@code null}, in which case it is ignored. If both strings
* are empty or {@code null}, or all elements get pruned out, then
* this returns a zero-element list.
*/
private static ArrayList<File> splitPaths(String path1, String path2,
boolean wantDirectories) {
ArrayList<File> result = new ArrayList<File>();
splitAndAdd(path1, wantDirectories, result);
splitAndAdd(path2, wantDirectories, result);
return result;
}

/**
* Helper for {@link #splitPaths}, which does the actual splitting
* and filtering and adding to a result.
*/
private static void splitAndAdd(String searchPath, boolean directoriesOnly,
ArrayList<File> resultList) {
if (searchPath == null) {
return;
}
for (String path : searchPath.split(":")) {
try {
StructStat sb = Libcore.os.stat(path);
if (!directoriesOnly || S_ISDIR(sb.st_mode)) {
resultList.add(new File(path));
}
} catch (ErrnoException ignored) {
}
}
}

现在可以对动态链接库的加载路径做个总结了,系统默认的目录为”/vendor/lib”和”/system/lib”。当使用System.loadLibrary或System.load来加载一个共享库的时候,会将VM栈中的ClassLoader传入。之后调用findLibrary方法,在两个目录中去寻找指定的so文件:一个是构造ClassLoader时,传进来的那个libraryPath;另一个则是system property中”java.library.path”的属性值。也就是说,实际上是会在如下的3个目录中进行查找:

  1. “/vendor/lib”
  2. “/system/lib”
  3. “/data/app-lib/包名-n”

对于”/data/app-lib/包名-n”这个路径,大家可能会比较陌生,但应该都知道”/data/data/包名/lib”目录,这里就简单讲解下apk安装过程中的一点细节,以说明二者之间的关系(在Android源码中的路径为”/frameworks/native/cmds/installd/commands.c”)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
int install(const char *pkgname, uid_t uid, gid_t gid, const char *seinfo)
{
char pkgdir[PKG_PATH_MAX];
char libsymlink[PKG_PATH_MAX];
char applibdir[PKG_PATH_MAX];
struct stat libStat;

if ((uid < AID_SYSTEM) || (gid < AID_SYSTEM)) {
ALOGE("invalid uid/gid: %d %d\n", uid, gid);
return -1;
}

if (create_pkg_path(pkgdir, pkgname, PKG_DIR_POSTFIX, 0)) { //创建包路径,"/data/data/包名"
ALOGE("cannot create package path\n");
return -1;
}

if (create_pkg_path(libsymlink, pkgname, PKG_LIB_POSTFIX, 0)) { //创建库路径,"/data/data/包名/lib"
ALOGE("cannot create package lib symlink origin path\n");
return -1;
}

if (create_pkg_path_in_dir(applibdir, &android_app_lib_dir, pkgname, PKG_DIR_POSTFIX)) { //创建"/data/app-lib/包名"目录
ALOGE("cannot create package lib symlink dest path\n");
return -1;
}

if (mkdir(pkgdir, 0751) < 0) {
ALOGE("cannot create dir '%s': %s\n", pkgdir, strerror(errno));
return -1;
}
if (chmod(pkgdir, 0751) < 0) {
ALOGE("cannot chmod dir '%s': %s\n", pkgdir, strerror(errno));
unlink(pkgdir);
return -1;
}

if (lstat(libsymlink, &libStat) < 0) {
if (errno != ENOENT) {
ALOGE("couldn't stat lib dir: %s\n", strerror(errno));
return -1;
}
} else {
if (S_ISDIR(libStat.st_mode)) {
if (delete_dir_contents(libsymlink, 1, 0) < 0) {
ALOGE("couldn't delete lib directory during install for: %s", libsymlink);
return -1;
}
} else if (S_ISLNK(libStat.st_mode)) {
if (unlink(libsymlink) < 0) {
ALOGE("couldn't unlink lib directory during install for: %s", libsymlink);
return -1;
}
}
}

if (symlink(applibdir, libsymlink) < 0) {
ALOGE("couldn't symlink directory '%s' -> '%s': %s\n", libsymlink, applibdir,
strerror(errno));
unlink(pkgdir);
return -1;
}

if (selinux_android_setfilecon2(pkgdir, pkgname, seinfo, uid) < 0) {
ALOGE("cannot setfilecon dir '%s': %s\n", pkgdir, strerror(errno));
unlink(libsymlink);
unlink(pkgdir);
return -errno;
}

if (chown(pkgdir, uid, gid) < 0) {
ALOGE("cannot chown dir '%s': %s\n", pkgdir, strerror(errno));
unlink(libsymlink);
unlink(pkgdir);
return -1;
}

return 0;
}

以上代码会先构造几个目录名:pkgdir为”/data/data/包名”,libsymlink为”/data/data/包名/lib”,applibdir为”/data/app-lib/包名”。然后创建相应目录,并赋权限。之后,建立”/data/data/包名/lib”指向”/data/app-lib/包名”的符号链接。
现在再回过头来说明下”/data/app-lib/包名-n”、”/data/data/包名/lib”这二者之间的关系。在”/data/data/包名/“目录下执行ls –l命令,就会发现lib是一个链接,So其实是放在”/data/app-lib/包名-n”路径下的。。
ls -l

Native 层的加载实现

doLoad实际上是调用本地的nativeLoad方法,nativeLoad会先更新LD_LIBRARY_PATH,然后执行dvmLoadNativeCode函数,真正实现so文件的加载。。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
/*
* static String nativeLoad(String filename, ClassLoader loader, String ldLibraryPath)
*
* Load the specified full path as a dynamic library filled with
* JNI-compatible methods. Returns null on success, or a failure
* message on failure.
*/
static void Dalvik_java_lang_Runtime_nativeLoad(const u4* args,
JValue* pResult)
{
StringObject* fileNameObj = (StringObject*) args[0];
Object* classLoader = (Object*) args[1];
StringObject* ldLibraryPathObj = (StringObject*) args[2];

assert(fileNameObj != NULL);
char* fileName = dvmCreateCstrFromString(fileNameObj);

if (ldLibraryPathObj != NULL) {
char* ldLibraryPath = dvmCreateCstrFromString(ldLibraryPathObj);
void* sym = dlsym(RTLD_DEFAULT, "android_update_LD_LIBRARY_PATH");
if (sym != NULL) {
typedef void (*Fn)(const char*);
Fn android_update_LD_LIBRARY_PATH = reinterpret_cast<Fn>(sym);
(*android_update_LD_LIBRARY_PATH)(ldLibraryPath);
} else {
ALOGE("android_update_LD_LIBRARY_PATH not found; .so dependencies will not work!");
}
free(ldLibraryPath);
}

StringObject* result = NULL;
char* reason = NULL;
bool success = dvmLoadNativeCode(fileName, classLoader, &reason);
if (!success) {
const char* msg = (reason != NULL) ? reason : "unknown failure";
result = dvmCreateStringFromCstr(msg);
dvmReleaseTrackedAlloc((Object*) result, NULL);
}

free(reason);
free(fileName);
RETURN_PTR(result);
}

dvmLoadNativeCode定义在Android源码中的路径为/dalvik/vm/Native.cpp,它的主要功能如下:

  1. 调用findSharedLibEntry方法,遍历查找已加载的lib。具体来说,就是先用待加载的lib路径名计算出一个32位hash值,然后遍历gDvm中的nativeLibs(其结构为HashTable用来保存加载的本地库),如果找到则返回一个SharedLib结构。这里如果LIB已被加载,则会对其加载的ClassLoader进行比较,JNI只允许同一个LIB只被一个ClassLoader加载;
    dvmLoadNativeCodedvmLoadNativeCodedvmLoadNativeCode
  2. 调用dlopen打开一个so;
    dvmLoadNativeCode
  3. 将新加载的LIB插入到gDvm保存的链表中,执行JNI_OnLoad的调用。
    dvmLoadNativeCodedvmLoadNativeCode

总结

在了解So在内存中的加载原理后,可以得知以下几点:

  1. So的加载路径为:”/vendor/lib”、”/system/lib”、”/data/app-lib/包名-n”;
  2. So的入口为init_array、init_func这些初始化函数。这部分在dlopen的过程中就会执行,再之后的是JNI_Onload方法的调用。这里面可以注册一些本地方法,也可以继续做些变量的初始化等操作;
  3. 在So的加载流程中,最终会被存放到SharedLib这个结构体中,并添加到nativeLibs这个hash表下。。
------ 本文结束 感谢阅读 ------